
Topics in Learning Theory

Lecture 6: Kernel Methods (I)



Topics

• From 2-norm regularization to kernel methods

• Mercel’s Theorem Reproducing kernel Hilbert space (RKHS)

• Learning in RKHS

• Example Kernels and Corresponding Feature Representation
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Empirical risk minimization with 2-norm regularization

• Consider 2-norm regularized empirical risk minimization formulation:

– map input x to high-dimensional feature ψ(x)
– scoring function f(x) = wTψ(x) + b (b is optional) .

[ŵ, b̂] = arg min
w,b

[
n∑

i=1

φ(wTψ(Xi) + b, Yi) + λwTw

]
(I)

• Solution:

ŵ = − 1
2λ

n∑
i=1

φ′1(ŵ
Tψ(Xi) + b̂, Yi)ψ(Xi).
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• Scoring function:

f(x) = ŵTx+ b̂ =
n∑

i=1

α̂iψ(Xi)Tψ(x) + b̂ =
n∑

i=1

α̂ik(x,Xi) + b̂,

where

α̂i =− φ′1(ŵ
Tψ(Xi) + b̂, Yi)/(2λ),

k(x, x′) =ψ(x)Tψ(x′).

and
ŵT ŵ =

∑
i,j

α̂iα̂jk(xi, xj) = α̂TKα̂,

• k(x, x′): kernel, and K: kernel gram matrix.
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Primal kernel learning formulation

• Primal kernel formulation:

[α̂, b̂] = arg min
α,b

[
n∑

i=1

φ ([Kα]i + b, Yi) + λαTKα

]
(II)

(where [Kα]i =
∑n

j=1αjk(Xi, Xj)) with scoring function

f(x) =
n∑

i=1

α̂ik(x,Xi) + b.

• If a kernel function can be represented as k(x, x′) = ψ(x)Tψ(x′), then (I)
and (II) are equivalent.
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Kernel learning formulation: interpretation

• Working with kernel or its implicit feature space is equivalent.

• Reduces high dimensional learning problem to problem in Rn.

• Each coefficients corresponding to a sample-point.

• 2-norm regularization in w to quadratic regularization in α.

– K has to be positive (semi)-definite.

• Replaces linear combination in high dimensional features by linear
combintation of kernel functions evaluated at the data points.
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Sparsity of dual parameter

• Primal formulation: [ŵ, b̂] = arg minw,b

[∑n
i=1 φ(wTψ(Xi) + b, Yi) + λwTw

]
• Solution: f(x) =

∑n
i=1 α̂ik(x,Xi) + b̂, α̂i = −φ′1(ŵTψ(Xi) + b̂, Yi)/(2λ)

• α̂i = 0 when φ′1(ŵTψ(Xi) + b̂, Yi) = 0

• SV classification with hinge loss φ(fi, yi) = (1− fiyi)+

– φ′1(fi, yi) = 0 when fiyi > 1.

• SV regression with ε-insensitive loss φ(fi, yi) = (|fi − yi| − ε)+

– φ′1(fi, yi) = 0 when |fi − yi| < ε.
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Comment: more general ways to use kernel

• Primal kernel formulation: f(x) =
∑n

i=1 α̂ik(x,Xi) + b

[α̂, b̂] = arg min
α,b

[
n∑

i=1

φ ([Kα]i + b, Yi) + λαTKα

]

• Treat kernel as features, and replace αTKα by other regularization condition
on α: ‖α‖1 or ‖α‖2.

– advantage: no need to require K positive definite.
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Two common kernels for high dimensional data

• Polynomial kernel with degree p: k(x, x′) = (1 + xTx′)p

• RBF (radial basis function) kernel: k(x, x′) = exp(−‖x− x′‖2
2/2σ

2).
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Example: true boundary
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LS with Polynomail kernel: p = 1
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LS with Polynomail kernel: p = 2
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LS with Polynomail kernel: p = 5
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LS with Polynomail kernel: p = 10
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LS with Polynomail kernel: p = 50
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LS with RBF kernel exp(−‖x− x′‖2
2/2σ

2): σ = 10
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LS with RBF kernel exp(−‖x− x′‖2
2/2σ

2): σ = 3
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LS with RBF kernel exp(−‖x− x′‖2
2/2σ

2): σ = 1
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LS with RBF kernel exp(−‖x− x′‖2
2/2σ

2): σ = 0.1
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Ridge regression with RBF as feature: σ = 10
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Ridge regression with RBF as feature: σ = 3
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Ridge regression with RBF as feature: σ = 1
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Ridge regression with RBF as feature: σ = 0.1
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Mercer’s Theorem

• Let k(x, x′) be a symmetric function. It’s a (positive-definite) kernel if and
only if ∀xi (i = 1, . . . , n), the gram matrix K = [k(xi, xj)]ni,j=1 is positive
semi-definite.

• (Mercer’s Theorem) Assume that k(x, x′) is a continuous symmetric function
on Rd ×Rd such that ∫

k(x, x′)f(x)f(x′)dxdx′ ≥ 0

for all f ∈ L2. Then we can expand k(x, x′) in a uniformly convergence
series in terms of eigen-functions vj of operator f →

∫
k(x, x′)f(x′)dx′:

k(x, x′) =
∑

j λjvj(x)vj(x′) = ψ(x)Tψ(x′) .
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Reproducing kernel Hilbert space (RKHS)

A Hilbert space H of functions spanned by functions of the form:

f(x) =
∑

i

αik(xi, x),

with norm:
‖f‖2

H =
∑
i,j

αiαjk(xi, xj),

where k is a kernel called reproducing kernel.

24



RKHS properties

• Some properties:

– there is a feature space representation:
∗ f(x) = wTψ(x), and ‖f‖H = ‖w‖2.

– each x′ maps to a vector ψ(x′) in the feature space, and corresponds to
function fx′(x) = k(x′, x) = ψ(x′)Tψ(x).

– f(x) ≤ ‖w‖2‖ψ(x)‖2 = ‖f‖H
√
k(x, x)

∗ ∀x, the linear functional f → f(x) is bounded.

• Given a Hilbert space H of real-valued functions f(x) with norm ‖ · ‖H, such
that f → f(x) is bounded for all x, then it is a RKHS.

– Rietz representatin theorem implies x′ → fx′(x) = k(x′, x) ∈ H
– such that f(x′) = 〈fx′, f〉H, thus fx′(x) = 〈fx′, fx〉H = k(x′, x).
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Learning in Hilbert space

• Primal formulation on RKHS:

[f̂ , b̂] = arg min
f∈H,b∈R

 n∑
i=1

φ

 n∑
j=1

f(Xi) + b, Yi

 + λ‖f‖2
H

 (III)

with scoring function f(x) = f̂(x) + b̂.

• If a reproducing kernel of an RKHS is k(x, x′) = ψ(x)Tψ(x′), then (I) and (II)
are special representations of (III), thus equivalent to (III).
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Different representations of RKHS norm

• f(x) ∈ H with RHKS H norm ‖f‖H
– feature: ψ(x)
– kernel: k(x, x′) = ψ(x)Tψ(x′)

• kernel representation: f(x) =
∑n

i=1αik(Xi, x)

‖f‖2
H = αTKmα ≤ a2.

• feature space representation: f(x) = wTψ(x)

‖f‖2
H = ‖w‖2

2
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Some examples

• Linear kernel: k(x, x′) = xTx′ =
∑

j xjx
′
j

– features: ψj(x) = xj.
– RKHS functions: f(x) = wTx.
– norm: ‖f‖2

H = ‖w‖2
2.

• Polynomial kernel: k(x, x′) = (1 + xTx′)p =
∑

sC
s
p

∏
j x

sj

j x
′
j
sj

– features:
∏d

j=1 x
sj

j : s0 +
∑d

j=1 sj = p and sj ≥ 0.
– RKHS functions: f(x) =

∑
sws

∏
j x

sj

j

– norm: ‖f‖2
H =

∑
sw

2
s/C

s
p.

• Inner product exponential kernel: k(x, x′) = exp(xTx′) =
∑

s

∏d
j=1

1
sj!
x

sj

j x
′
j
sj.
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– features:
∏d

j=1 x
sj

j with sj ≥ 0.
– RKHS functions: f(x) =

∑
sws

∏
j x

sj

j

– norm: ‖f‖2
H =

∑
sw

2
s

∏d
j=1 sj!

• RBF (radial basis function) exponential kernel:
k(x, x′) = exp(−‖x− x′‖2

2/2σ
2) =

∑
s

∏d
j=1

1

sj!σ
2sj
x

sj

j e
−x2/2σ2

x′j
sje−x′

2
/2σ2

.

– features:
∏d

j=1 x
sj

j e
−x2/2σ2

– RKHS functions: f(x) =
∑

sws

∏
j x

sj

j e
−x2/2σ2

– norm: ‖f‖2
H =

∑
sw

2
s

∏d
j=1(sj!σ2sj)

• Smoothing spline (1-d) with periodic boundary condition: f(−π) = f(π).

– RKHS functions f(x) =
∑

j>0[aj cos(jx) + bj sin(jx)].
– norm ‖f‖2

H = 1
π

∫ π

−π
(f (p)(x))2dx =

∑
j j

2p(a2
j + b2j)

– features cos(jx) and sin(jx)
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